## Getting Data

You can easily obtain spectra from your Tracer using the S1PXRF software. This enables you to see your spectrum as it is gathered, and do both qualitative and quantitative analysis.

This guide will take you step by step, button click by button click, through using S1PXRF and your Tracer



# Getting Data

# Setting up for Analysis





This is the home screen after launching S1PXRF. At this point, you are not connected to the instrument



KTI (.PDZ 40.00kV, 12.50µA)

| 22.08  | 25.76         | 29.43 | 33.11      |       | 36.79       | ) '                  | 4   |
|--------|---------------|-------|------------|-------|-------------|----------------------|-----|
| -15.0C | Amb:101.4F    | Ra    | w:2,224.68 | 1     | /alid:2,147 | 7.68                 | 1.  |
| 9      | Shift:0.00000 |       | TRA        | CERTU | ırbo        |                      | 11. |
|        |               |       |            | Pz †0 | P: ↓)       | 9:16 AM<br>7/14/2013 |     |





Preview...'

| 22.08  | 25.76          | 29.43 | 33.11   | 36.79                         | 4  |
|--------|----------------|-------|---------|-------------------------------|----|
| -15.0C | Amb:101.4F     | Raw:2 | ,224.68 | Valid:2,147.68                | 1. |
| Sh     | nift: 0. 00000 |       | TRA     | CERTurbo                      | 1. |
|        |                |       | ▲ [     | ┺ ĦÎ ╦ ♠) 9:17 AM<br>7/14/201 | 3  |





| mana mana |               |         | were and the second sec |                |    |
|-----------|---------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----|
| ah aa     |               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |    |
| 22.08     | 25.76         | 29.43   | 33.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 36.79          | 4  |
| 15.0C     | Amb:101.4F    | Raw:2,3 | 224.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Valid:2,147.68 | 1. |
| Sh        | nift: 0.00000 |         | TRACE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RTurbo         | 1. |
|           |               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9:17 A         | M  |

7/14/2013







KTI (.PDZ 40.00kV, 12.50µA)

| mand               | monorman     | and a state of the | www.www. |                                                 |          |
|--------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------------|----------|
| 2 <sup>2</sup> .08 | 25.76        | 29.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 33.11    | 36.79                                           | 4        |
| -15.0C             | Amb:101.4F   | Raw:2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 224.68   | Valid:2,147.68                                  |          |
| Sh                 | nift:0.00000 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TRACE    | RTurbo                                          | //       |
|                    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 🕞      | 18 A<br>1 · · · · · · · · · · · · · · · · · · · | M<br>013 |

71

## S1PXRF - 14-Jul-2013 09:18:21



X



## KTI (.PDZ 40.00kV, 12.50µA)

| not be found      | × |
|-------------------|---|
| n the instrument. |   |
| Ignore            |   |

|                    |             |        | and the second sec | ·                  |    |
|--------------------|-------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----|
| 2 <sup>2</sup> .08 | 25.76       | 29.43  | 33.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 36.79              | 4  |
| -15.0C             | Amb:101.4F  | Raw:2, | 224.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Valid:2,147.68     |    |
| Sh                 | ift:0.00000 |        | TRACE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RTurbo             | 1. |
|                    |             |        | A 🛓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ・<br>10 記 小 9:18 A | M  |

\_



S1PXRF - 14-Jul-2013 09:19:33





71



| m Port 🛛 📉 🗙 |  |
|--------------|--|
| ОК           |  |
| Cancel       |  |
|              |  |
|              |  |



| m Port |  |
|--------|--|
| OK     |  |
| Cancel |  |
|        |  |
|        |  |

![](_page_14_Figure_0.jpeg)

71.

### S1PXRF - 14-Jul-2013 09:20:37

![](_page_15_Figure_2.jpeg)

![](_page_16_Figure_0.jpeg)

Back Scatter, when selected, provides a safety feature - your instrument will shut off automatically if X-rays are not all accounted for. However, this can also prevent measurements for small objects. You can temporarily turn it off for some measurements

7/14/2013

| PC Trigg | ler   |  |  |
|----------|-------|--|--|
| Do       | one   |  |  |
| Back Sc  | attei |  |  |
| nation   |       |  |  |

![](_page_17_Figure_0.jpeg)

![](_page_18_Figure_0.jpeg)

![](_page_19_Figure_1.jpeg)

| 3 09.21.48                     | _                                             |        | ×   |
|--------------------------------|-----------------------------------------------|--------|-----|
| t 14.00                        |                                               |        |     |
| hotos                          | Ζ 40.00ΚΥ, ΙΖ.50μΑΙ                           |        |     |
| nnle                           |                                               |        |     |
|                                |                                               |        |     |
| 55.255                         |                                               |        |     |
| OK ler                         |                                               |        |     |
| Actual High<br>Voltage (kV)    |                                               |        |     |
| 0.05                           |                                               |        |     |
|                                |                                               |        |     |
| Actual Anode<br>Current (μΑ)   |                                               |        |     |
| 0.05                           |                                               |        |     |
|                                |                                               |        |     |
|                                | Lovy Filtor (1 mil Al 1 mil Ti)               |        |     |
| I - rei                        | 10W FILLER (1 min AI, 1 min II)               |        | _   |
|                                | 2 - INO FIIter                                |        | . 1 |
| 3 - Red Fi                     | Iter (1 mil Al, 1 mil Ti, 1 mil               | Cu     | )   |
| 🔍 4 - Green I                  | Filter (1 mil Al, 1 mil TI, 6 mi              | I C    | u)  |
| 22                             | 5 - Blue Filter (1 mil Ti)                    |        |     |
| -15.0C Amb:10<br>Shift-0.00000 | 1.4F Raw:2,224.68 Valid:2,147.<br>TBACEBTurbo | 68     |     |
|                                |                                               | 9:21 A | M.  |
|                                |                                               | 7/14/2 | 013 |

![](_page_20_Figure_0.jpeg)

![](_page_20_Picture_2.jpeg)

![](_page_21_Figure_0.jpeg)

![](_page_22_Figure_0.jpeg)

7/14/2013

![](_page_23_Figure_0.jpeg)

# Getting Data

# Step 2 Collecting Data

![](_page_24_Picture_2.jpeg)

![](_page_25_Figure_0.jpeg)

![](_page_26_Picture_0.jpeg)

![](_page_27_Figure_0.jpeg)

![](_page_28_Figure_0.jpeg)

![](_page_29_Figure_0.jpeg)

KTI 40.00kV, 14.80µA (.PDZ 40.00kV, 12.50µA)

Click the '<>' button to expand your window to focus on specific elements. You can also press the Up and Down buttons on your keyboard. You can also click (or on tablets touch) and spread your spectra as well

| 16.27  | 16.88       | 17.48         | 18.08               |     |
|--------|-------------|---------------|---------------------|-----|
| -15.0C | Amb:100.8F  | Raw:13,067.02 | Valid:12,601.06     | 1.  |
| Shi    | ift:0.00000 | TRA           | CERTurbo            | 11. |
|        |             |               | P:28 AM<br>7/14/201 | 3   |

![](_page_30_Picture_0.jpeg)

KTI 40.00kV, 14.80µA (.PDZ 40.00kV, 12.50µA)

| 16.27   | 16.88      | 17.48         | 18.08                                                                                                                                                                                                                                                                                                  |         |
|---------|------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| :-15.0C | Amb:100.8F | Raw:13,067.02 | Valid:12,601.06                                                                                                                                                                                                                                                                                        |         |
| Shi     | ft:0.00000 | TR/           | ACERTurbo                                                                                                                                                                                                                                                                                              |         |
|         |            |               | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </th <th>M<br/>13</th> | M<br>13 |

![](_page_31_Figure_0.jpeg)

![](_page_32_Figure_0.jpeg)

| 16.27         | 16.88      | 17.48         | 18.08           |    |
|---------------|------------|---------------|-----------------|----|
| -15.0C        | Amb:100.8F | Raw:13,067.02 | Valid:12,601.06 | /_ |
| Shift:0.00000 |            | TRACERTurbo   |                 | /_ |
|               |            |               |                 |    |

![](_page_33_Picture_0.jpeg)

![](_page_34_Figure_0.jpeg)

![](_page_35_Figure_0.jpeg)


### S1PXRF - 14-Jul-2013 09:30:41





Х

S1PXRF - 14-Jul-2013 09:30:59

71.



7/14/2013



Always select to save as a 'PDZ' file - this is the file format for other Bruker software.

'TXT' and 'CSV' can be used in Excel and other programs - but this is the raw data, it may only be useful to advanced users

Make sure Autosave is selected

After you have selected settings, press the 'OK' button

r Tm Yb Lu

33.22 22.15 29.53 36.92 25.84 Det:-15.0C Amb:100.8F Raw:13,067.02 Valid:12,601.06 Shift:0.00000 TRACERTurbo 7/14/2013











33.22 22.15 36.91 25.84 29.53

Amb:102.1F Raw:13,072.34 Valid:12,585.11 Shift:0.00000 TRACERTurbo 9:34 AM **†1) 🏝** 

7/14/2013







71.

S1PXRF - 14-Jul-2013 09:34:26







|       |              |     |            | · · · · · · · · · · · · · · · · · · · |    |
|-------|--------------|-----|------------|---------------------------------------|----|
| 22.15 | 2.15 25.84   |     | 33.22      | 36.91                                 |    |
| 15.0C | Amb:102.1F   | Raw | :13,072.34 | Valid:12,585.11                       | 1. |
| Sh    | nift:0.00000 |     | TRA        | CERTurbo                              | 1. |
|       |              |     |            | 9:34                                  | AM |

7/14/2013

X







7/14/2013

## Getting Data

# Step 3 Navigating and Analyzing Spectra







X

















| $\sim$ | <u> </u> | $\sim$  |       | -   |       | - man   |      |            |       | -           |         | ~~~ |
|--------|----------|---------|-------|-----|-------|---------|------|------------|-------|-------------|---------|-----|
| 1      | 6.03     | }       | 7     | .23 |       |         | 8.44 |            |       |             | 9.64    |     |
| -15.0C |          | Amb:1   | 02.8F |     | Raw:9 | ,731.71 |      | ٧          | alid: | 9,439       | 9.02    | 1.  |
|        | Shift:   | 0.00000 |       |     |       |         | TRAC | ERTu       | rbo   |             |         | 11. |
|        |          |         |       |     |       |         | -    | 3 <b>†</b> | *     | <b>(</b> )) | 9:39 AM |     |





The next element at first glance seems to be Titanium - but the peaks do not match

| $\sim$ | $\sim$       |       |      | and the second s |           |                 |                |
|--------|--------------|-------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------|----------------|
| 6      | 5.03         | 7     | .23  | 8.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4 '       | 9.              | 64             |
| -15.0C | Amb:1        | 02.8F | Raw: | 9,731.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Vali      | d:9,439.02      | 1.             |
| Sł     | nift:0.00000 |       |      | TBA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ACERTurbo | )               | 11.            |
|        |              |       |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pa †0 *   | 9:3 <u>9</u> :3 | 9 AM<br>4/2013 |















S1PXRF - 14-Jul-2013 09:42:12





X











## Getting Data

## Step 4 Quantifying Data







| 22.14  | 25.84      | 29.53   | 33.22  | 36.91             | 4           |
|--------|------------|---------|--------|-------------------|-------------|
| -15.5C | Amb:94.7F  | Raw:41, | 871.66 | Valid: 38,009.63  | 1.          |
| Shil   | ft:0.00000 |         | TRACE  | RTurbo            | 1.          |
|        |            |         | -      | ; <b>†⊡ ‱ (</b> ) | AM<br>/2013 |

 $\mathbf{X}$ 



| 22.14  | 25.84         | 29.53  | 33.22   | 36.91           | - 4 |
|--------|---------------|--------|---------|-----------------|-----|
| -15.5C | Amb:94.7F     | Raw:41 | ,871.66 | Valid:38,009.63 | /_  |
|        | Shift:0.00000 |        | TRACE   | RTurbo          |     |

7/14/2013

 $\mathbf{X}$


71. Setup ID DownLoad Timed Tube Help File real a 🕑 <u>S</u>tar 21 **Read File** PeakID T3S2430 Emperical Cals T3S2430 ▶ ~ C Search T3S2430 € <u>B</u> <u>M</u> (→) << New folder Organize 🔻 Date modified Name 쑦 Favorites 📃 Desktop AL1.CFZ 1/11/2013 11:44 AM 👃 Downloads AL1.SRZ 1/11/2013 11:43 AM 🙊 Photo Stream ALV1.SRZ 1/11/2013 11:44 AM 🔚 Recent places ALV11.CFZ 1/11/2013 11:44 AM ALV12.CFZ 1/11/2013 11:44 AM 📄 Libraries AU1.CFZ 1/11/2013 11:43 AM Documents AU1.SRZ 1/11/2013 11:43 AN 🎝 Music CO1.CFZ 1/11/2013 11:43 AM Pictures CO1.SRZ 1/11/2013 11:43 AM 😽 Videos 🔼 CU1.CFZ 1/11/2013 11:43 AM CU1.SRZ 1/11/2013 11:43 AM Normal Computer CU2.CFZ 1/11/2013 11:43 AM BOOTCAMP (C:) FE1.CFZ 1/11/2013 11:43 AN 👝 Lincoln (D:) FE1.SRZ FE2.CFZ 1/11/2013 📬 Network NI1.CFZ <u>A</u>= 1/11/201 < Coef File name: FE1.CFZ ¥ Open LSec:3.74 Chan:1903.929 Kev:38.2417 Cnt:0 Det: Vac:715 evch:20.0857

71

Po

# S1PXRF - 14-Jul-2013 09:47:05

|        |                | X        | DZ 40.00kV, 14.80µA)                                                                                                                |
|--------|----------------|----------|-------------------------------------------------------------------------------------------------------------------------------------|
| 0 E    | Emperical Cals | <u>م</u> | Select Elements                                                                                                                     |
|        | == ▼           |          | Al Si P S Cl Ar<br>Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr<br>Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe<br>Be Os Ir Pt Au Ha TL Ph Bi Po At Bn |
| Л<br>Л | CFZ File       |          | Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu                                                                                                 |
| 1      | SRZ File       |          | U Np Pu Am Cm                                                                                                                       |
| 1      | CFZ File       |          |                                                                                                                                     |
| 1      | CFZ File       |          |                                                                                                                                     |
| 1      | CFZ File       |          |                                                                                                                                     |
| 1      | SRZ File       |          |                                                                                                                                     |
| 1      | CFZ File       |          |                                                                                                                                     |
| 1      | SRZ File       |          |                                                                                                                                     |
| 1      | CFZ File       |          |                                                                                                                                     |
| 1      | SRZ File       |          |                                                                                                                                     |
| 1      | CFZ File       |          |                                                                                                                                     |
| 1      | CFZ File       |          |                                                                                                                                     |
|        |                |          |                                                                                                                                     |

# Since Iron is the dominant element in this spectra, we will use the FE1.CFZ file

| -      | Cancel        |       |               |        |                  | T                    |    |
|--------|---------------|-------|---------------|--------|------------------|----------------------|----|
|        |               | 29    | .53           | 33.22  | 36.91            | · · ·                | 4  |
| -15.5C | Amb:S         | 94.7F | Raw: 41,871.0 | 66     | Valid:38,009     | .63                  | h. |
|        | Shift:0.00000 |       |               | TRACER | Turbo            |                      | k  |
|        |               |       |               | ▲ ►    | <b>†© *</b> 1 •> | 9:47 AM<br>7/14/2013 |    |

 $-\Box$   $\times$ 



| 22.14  | 25.84       | 29.53   | 33.22   | 36.91             | ∣ ′ 4                |
|--------|-------------|---------|---------|-------------------|----------------------|
| -15.5C | Amb:94.7F   | Raw:41, | ,871.66 | Valid: 38,00      | 9.63 //              |
| Shi    | ift:0.00000 |         | TRACI   | ERTurbo           | 1.                   |
|        |             |         | - F     | <b>; †î *i</b> •) | 9:47 AM<br>7/14/2013 |

 $\mathbf{X}$ 



| 5                                                       | Result Table                     | ×                      |                               |  |  |  |  |  |
|---------------------------------------------------------|----------------------------------|------------------------|-------------------------------|--|--|--|--|--|
| Copy Save                                               | -Inte                            |                        |                               |  |  |  |  |  |
| Hotel Glass Y                                           | ellow Filter 07-14-2013 09:47:25 | Concentration (FE      |                               |  |  |  |  |  |
| TiKa1                                                   | 0.0020568686                     | 0.086126619            |                               |  |  |  |  |  |
| V Ka1                                                   | 0.0026004382                     | 0.032601909            |                               |  |  |  |  |  |
| CrKa1                                                   | 0.2237540267                     | 22.725950990           |                               |  |  |  |  |  |
| MnKa1                                                   | 0.0465116729                     | 1.749850070            |                               |  |  |  |  |  |
| FeKa1                                                   | 0.5244142514                     | 64.936527879           |                               |  |  |  |  |  |
| CoKa1                                                   | 0.0376943989                     | 0.531770488            |                               |  |  |  |  |  |
| NiKa1                                                   | 0.0356112622                     | 2.112258123            |                               |  |  |  |  |  |
| CuKa1                                                   | 0.0028178025                     | 0.236141518            |                               |  |  |  |  |  |
| W Lb1                                                   | 0.0003884333                     | 0.120002285            |                               |  |  |  |  |  |
| MoKa1                                                   | 0.1241508452                     | 3.694419234            |                               |  |  |  |  |  |
|                                                         | In the first co<br>includ        | lumn, we<br>led in the | have the elements calibration |  |  |  |  |  |
| NiKa1<br>CoKa1<br>U Ka1<br>U Ka1<br>TiKa1<br>CuKa1W Lb1 |                                  |                        |                               |  |  |  |  |  |
| 3.69                                                    | 7.38                             | 11.07                  | 14.76 18.45                   |  |  |  |  |  |
| it:0                                                    | LSec:3.74                        | Chan:1903.929          | Kev:38.2417 Det:              |  |  |  |  |  |
| evch:2                                                  | .0.0857                          |                        | Vac:715                       |  |  |  |  |  |
|                                                         |                                  | L BASSIN               |                               |  |  |  |  |  |

## KTI 40.00kV, 14.80µA (.PDZ 40.00kV, 14.80µA)



7/14/2013

\_

| 22.14      | 25.84       | 29.53  | 33.22   | 36.91            | - 4 |
|------------|-------------|--------|---------|------------------|-----|
| Det:-15.5C | Amb:94.7F   | Raw:41 | ,871.66 | Valid: 38,009.63 | 1.  |
| Shi        | ift:0.00000 |        | TRACE   | RTurbo           | 1.  |
|            |             |        | · 🛌     | 9:47 A           | M   |



|                      |                            |                                      |                     | Select E                                | lements                                                        |                              |
|----------------------|----------------------------|--------------------------------------|---------------------|-----------------------------------------|----------------------------------------------------------------|------------------------------|
| Conv. Save lat       | Result Table               | ×                                    | H<br>Li Be<br>Na Mo | TiKa1 · 22 ( K )                        | LOM <u>He</u><br>Z+ <u>BCNDFNe</u><br>AlSiPSCIAr               |                              |
| Copy Save-Int        |                            |                                      |                     | Y Zr Nh Ma Ta Bu Bh                     | <u>Ni Lu Zn Galge As Se Br Kr</u><br>Pd Ag Cd In Sn Sh Tell Xe |                              |
| Hotel Glass Yellow   | Pilter 07-14-2013 09:47:25 | Concentration (FE                    | Cs Ba               | La Hf Ta W Be Os Ir                     | Pt Au Ha TI Pb Bi Po At Bn                                     |                              |
|                      | 0.0020568686               | 0.086126619                          | Fr Ba               |                                         |                                                                |                              |
|                      | 0.0026004382               | 0.032601909                          |                     |                                         |                                                                |                              |
|                      | 0.2237340267               | 1 749950070                          |                     |                                         | Amjumj                                                         |                              |
|                      | 0.0460116723               | 1.743630070<br>C4.020E27070          |                     |                                         |                                                                |                              |
|                      | 0.0244142014               | 0 521 770 400                        |                     |                                         |                                                                |                              |
|                      | 0.0376343363               | 2 112250122                          |                     |                                         |                                                                |                              |
|                      | 0.0306112622               | 0.2261/1510                          |                     |                                         |                                                                |                              |
|                      | 0.0020170020               | 0.230141310                          |                     |                                         |                                                                |                              |
| W LDI                | 0.1013004333               | 0.120002283                          |                     |                                         |                                                                |                              |
|                      | The                        | second column ir<br>used to estimate | elemental weig      | atical param<br>ght percents            | eters                                                          |                              |
|                      | NiKa1<br>ÇeKa1             | Mo ]                                 | (a1                 |                                         |                                                                |                              |
| Mu<br>V Kai<br>TiKai | Kal<br>CuKal¥ Lb1          |                                      |                     | · • · · · · · · · · · · · · · · · · · · |                                                                |                              |
| 3.69                 | 7.38                       | 11.07 14.76                          | 18.45 22.14         | 25.84                                   | 29.53 33.22                                                    | 36.91                        |
| nt:0                 | LSec:3.74                  | Chan:1903.929 Kev:38.                | 2417 Det:-15.5C     | Amb:94.7F                               | Raw:41,871.66                                                  | Valid: 38,009.63             |
| evch:20.0            | 857                        | Vac:715                              |                     | Shift:0.00000                           | TRACER                                                         | l urbo                       |
| <b>(</b>             |                            |                                      |                     |                                         | ▲ <mark> </mark>                                               | <b>#1 **</b> (*) 9:4<br>7/14 |

## KTI 40.00kV, 14.80µA (.PDZ 40.00kV, 14.80µA)

\_ 🗆 🗡



| 5                        | Result Table        | ×                                 |                                                                                    |
|--------------------------|---------------------|-----------------------------------|------------------------------------------------------------------------------------|
| Copy Save-Inte           |                     |                                   |                                                                                    |
| Hotel Glass Yellow Filte | 07-14-2013 09:47:25 | Concentration (FE*                |                                                                                    |
| TiKa1                    | 0.0020568686        | 0.086126619                       |                                                                                    |
| V Ka1                    | 0.0026004382        | 0.032601909                       |                                                                                    |
| CrKa1                    | 0.2237540267        | 22.725950990                      |                                                                                    |
| MnKa1                    | 0.0465116729        | 1.749850070                       |                                                                                    |
| FeKa1                    | 0.5244142514        | 64.936527879                      |                                                                                    |
| CoKa1                    | 0.0376943989        | 0.531770488                       |                                                                                    |
| NiKa1                    | 0.0356112622        | 2.112258123                       |                                                                                    |
| CuKa1                    | 0.0028178025        | 0.236141518                       |                                                                                    |
| W Lb1                    | 0.0003884333        | 0.120002285                       |                                                                                    |
| MoKa1                    | 0.1241508452        | 3.694419234                       |                                                                                    |
| U Kal                    | NiKa1<br>Na1        | The thir<br>cas<br>Molybd<br>othe | d column includes<br>se, we have ~23% (<br>enum, ~2% Nickel<br>er smaller concentr |
| TiKa1                    | CuKa1V Lb1          |                                   | $\dots$                                                                            |
| 3.69                     | 7.38                | 11.07                             | 14.76 18.45                                                                        |
| Cnt:0 LS                 | ec:3.74             | Chan:1903.929                     | Kev:38.2417 Det:                                                                   |
| evch:20.0857             | <b>N</b>            |                                   |                                                                                    |

## KTI 40.00kV, 14.80µA (.PDZ 40.00kV, 14.80µA)



9:47 AM

7/14/2013

**†1) 🏝** 







### KTI 40.00kV, 14.80µA (.PDZ 40.00kV, 14.80µA)

|                 |                       |                 |             |                 |              | Se              | elec     | t E             | ler      | ner             | nts             |                       |                       |               |                      |                      |                       |
|-----------------|-----------------------|-----------------|-------------|-----------------|--------------|-----------------|----------|-----------------|----------|-----------------|-----------------|-----------------------|-----------------------|---------------|----------------------|----------------------|-----------------------|
| H               | Be                    |                 | TiKa<br>Cle | a1 - 2<br>ar Al | 22<br>     [ | ()<br>Ac        | K<br>Id  | O<br>Z          | L        | O<br>Z+         | M               | <u>B</u>              | <u>C</u>              | N             | 0                    | F                    | <u>He</u><br>Ne       |
| Na<br>K<br>Rb   | <u>Mg</u><br>Ca<br>Sr | <u>Sc</u><br>Y  | Ti<br>Zr    | V<br>Nb         | Cr<br>Mo     | <u>Mn</u><br>Tc | Fe<br>Ru | <u>Co</u><br>Rh | Ni<br>Pd | <u>Cu</u><br>Ag | J<br>Zn<br>Cd   | <u>Al</u><br>Ga<br>In | <u>Si</u><br>Ge<br>Sn | P<br>As<br>Sb | <u>S</u><br>Se<br>Te | <u>CI</u><br>Br<br>I | <u>Ar</u><br>Kr<br>Xe |
| <u>Cs</u><br>Fr | <u>Ba</u><br>Ra       | <u>La</u><br>Ac | Hf          | Ta<br>Ce        | W<br>Pr      | Re<br>Nd        | Os<br>Pm | lr<br>Sm        | Pt<br>Eu | Au<br>Gd        | <u>Hg</u><br>ТЬ | TI<br>Dy              | РЬ<br>Ho              | Bi<br>Er      | Po<br>Tm             | Аt<br>Yb             | <u>Rn</u><br>Lu       |
|                 | <u>0</u> K            |                 |             | Th              | Pa           | U               | Np       | Pu              | Am       | Cm              |                 |                       |                       |               |                      |                      |                       |

7/14/2013

# We can select the cells in this window and copy them into Excel, Word, or any other software program

| 22.14  | 25.84        | 29.53 | 33.22        | 2 36.9      | 1 4              |
|--------|--------------|-------|--------------|-------------|------------------|
| -15.5C | Amb:94.7F    | Rav   | w: 41,871.66 | Valid:38,00 | <b>)9.63</b> //. |
| Sh     | ift: 0.00000 |       | TR           | ACERTurbo   | h.               |
|        |              |       |              |             | 9:47 AM          |